

Jacaranda Hall 3314 Mail Code Phone: N/A
Email: lcaretto@csun.edu 8348 Fax: 818.677.7062

College of Engineering and Computer Science
Mechanical Engineering Department

Numerical Analysis Notes

November 4, 2017 Instructor: Larry Caretto

Numerical Differentiation

Introduction

These notes provide a basic introduction to numerical differentiation using finite- difference grids.
They consider the interplay between truncation error and roundoff error.

Finite-difference grids

In a finite-difference grid, a region is subdivided into a set of discrete points. The spacing
between the points may be uniform or non-uniform. For example, a grid in the x direction, xmin ≤ x
≤ xmax may be written as follows. First, we place a series of N+1 nodes numbered from zero to N
in this region. The coordinate of the first node, x0 equals xmin. The final grid node, xN = xmax. The
spacing between any two grid nodes, xi and xi-1, has the symbol Δxi. These relations are
summarized as equation [1].

 x0 = xmin xN = xmax xi – xi-1 = Δxi [1]

A non-uniform grid, with different spacing between different nodes, is illustrated below.

 ●---------●------------●------------------●---~ ~-------●----------●------●
 x0 x1 x2 x3 xN-2 xN-1 xN

For a uniform grid, all values of Δxi are the same. In this case, the uniform grid spacing, in a one-
dimensional problem is usually given the symbol h. I.e., h = xi – xi-1 for all values of i.

In these notes, we will limit our consideration to one-dimensional finite-difference problems.
However, advanced courses consider multiple space dimensions discussed in equations [2] and
[3] below.

In two space dimensions a grid is required for both the x and y, directions, which results in the
following grid and geometry definitions, assuming that there are M+1 grid nodes in the y direction.

 x0 = xmin xN = xmax xi – xi-1 = Δxi
 y0 = ymjn yM = ymay yj – yj-1 = Δyj [2]

For a three-dimensional transient problem there would be four independent variables: the three
space dimensions, x, y and z, and time. Each of these variables would be defined at discrete
points, i.e.

 x0 = xmin xN = xmax xi – xi-1 = Δxi

 y0 = ymjn yM = ymay yj – yj-1 = Δyj [3]
 z0 = zmkn zK = zmaz zk – zk-1 = Δzk
 t0 = tmin tL = tmay tn – tn-1 = Δtn

mailto:lcaretto@csun.edu

Numerical Differentiation L. S. Caretto, November 4, 2017 Page 2

Any dependent variable such as u(x,y,z,t) in a continuous representation would be defined only at
discrete grid points in a finite-difference representation. The following notation is used for a one-
dimensional problem.

)(kk xff [4]

This notation can be extended to problems in more than one dimension including transient

problems. In the most complex case the notation),,,(nkji

n

ijk tzyxuu is used to denote the

value of the dependent at a particular point in the region, (xi, yj, zk, tn) where the variable is
defined.

Finite-difference Expressions Derived from Taylor Series

The Taylor series provides a simple tool for deriving finite-difference approximations. It also gives
an indication of the error caused by the finite difference expression. Recall that the Taylor series
for a function of one variable, f(x), expanded about some point x = a, is given by the infinite
series,

)-(
!3

1
)-(

!2

1
)()()(3

3

3
2

2

2

ax
dx

fd
ax

dx

fd
ax

dx

df
afxf

axaxax

 [5]

The “x = a” subscript on the derivatives reinforces the fact that these derivatives are evaluated at
the expansion point, x = a. We can write the infinite series using a summation notation as
follows:

0

)-(
!

1
)(

n

n

ax

n

n

ax
dx

fd

n
xf [6]

In the equation above, we use the definitions of 0! = 1! = 1 and the definition of the zeroth
derivative as the function itself. I.e., d0f/dx0|x=a = f(a).

If the series is truncated after some finite number of terms, say m terms, the omitted terms are
called the truncation error. These omitted terms are also an infinite series. This is illustrated
below.

errorTruncationusedTerms

ax
dx

fd

n
ax

dx

fd

n
xf

mn

n

ax

n

nm

n

n

ax

n

n

 10

)-(
!

1
)-(

!

1
)(

 [7]

In this equation the second sum represents the truncation error, εm, from truncating the series
after m terms.

1

)-(
!

1

mn

n

ax

n

n

m ax
dx

fd

n
 [8]

The theorem of the mean can be used to show that the infinite-series truncation error can be
expressed in terms of the first term in the truncation error, that is

Numerical methods ME 309, L. S. Caretto, November 4, 2017 Page 3

1

1

1

)-(
!)1(

1

 m

x

m

m

m ax
dx

fd

m

 [9]

Here the subscript, “x = ξ”, on the derivative indicates that this derivative is no longer evaluated at
the known point x = a, but is to be evaluated at x = ξ, an unknown point between x and a. Thus,
the price we pay for reducing the infinite series for the truncation error to a single term is that we
lose the certainty about the point where the derivative is evaluated. In principle, this would allow
us to compute a bound on the error by finding the value of ξ, between x and a, that made the
error computed by equation [9] a maximum. In practice, we do not usually know the exact
functional form, f(x), let alone its (m+1)th derivative.

In using Taylor series to derive the basic finite-difference expressions, we start with uniform one-
dimensional grid spacing. The difference, Δxi, between any two grid points is the same and is
given the symbol, h. This uniform grid can be expressed as follows.

 Δxi = xi – xi-1 = h or xi = x0 + ih for all i = 0,…,N [10]

Various increments in x at any point along the grid can be written as follows:

 xi+1 – xi-1 = xi+2 – xi = 2h xi-1 – xi = xi – xi+1 = –h xi-1 – xi+1 = xi – xi+2 = –2h [11]

Using the increments in x defined above and the notation fi = f(xi) the following Taylor series can
be written using expansion about the point x = xi to express the values of f at some specific grid
points, xi+1 , xi-1 , xi+2 and xi-2. The conventional Taylor series expression for f(x) in equation [5]
can be adapted for use in finite differences by writing an expansion equation about a particular
grid point, x = xi, to determine the value of f(x) at another grid point, xi+k. From equation [10], we

see that xi+k = xi + kh so that f(xi+k) = f(xi + kh). The difference, x, in the independent variable, x,
between the evaluation point, xi + kh, and the expansion point, xi, is equal to kh. Using xi = a as

the expansion point and kh as x allows us to rewrite equation [5] as shown below.

)(
!3

1
)(

!2

1
)()(3

3

3
2

2

2

kh
dx

fd
kh

dx

fd
kh

dx

df
xfkhxf

iii xxxxxx

ii [12]

The next step is to use the notation that f(xi + kh) = fi+k, and the following notation for the nth
derivative, evaluated at x = xi.

iii xx

n

n
n

i

xx

i

xx

i
dx

fd
f

dx

fd
f

dx

df
f

 ...
2

2
'''

 [13]

With these notational changes, the Taylor series in equation [12] can be written as follows.

!3

)(

!2

)(3
'''

2
'''

kh
f

kh
fkhfff iiiiki [14]

Finite-difference expressions for various derivatives can be obtained by writing the Taylor series
shown above for different values of k, combining the results, and solving for the derivative. The
simplest example of this is to use only the series for k = 1.

Numerical Differentiation L. S. Caretto, November 4, 2017 Page 4

62

3
'''

2
'''

1

h
f

h
fhfff iiiii [15]

We can rearrange this equation to solve for the first derivative, f’i; recall that this is the first
derivative at the point x = xi.

)(.....
62

1

2
'''''1' hO

h

ffh
f

h
f

h

ff
f ii

ii
ii

i

 [16]

The first term to the right of the equal sign gives us a simple expression for the first derivative; it is
simply the difference in the function at two points, f(xi+h) – f(xi), divided by h, which is the
difference in x between those two points. The remaining terms in the first form of the equation
are an infinite series. That infinite series gives us an equation for the error that we would have if
we used the simple finite difference expression to evaluate the first derivative.

Representing the truncation error as the order of the error

As noted above, we can replace the infinite series for the truncation error by the leading term in
that series. Remember that we pay a price for this replacement; we no longer know the point at
which the leading term is to be evaluated. Because of this we often write the truncation error as
shown in the second equation. Here we use a capital oh followed by the grid size in parentheses.
In general, the grid size is raised to some power. (Here we have the first power of the grid size, h
= h1.) For a truncation error proportional to the nth power of the step size we would use the
notation, O(hn). This notation tells us how the truncation error depends on the step size.

The order of the error dependence on the step size is an important concept. If the error is
proportional to h, cutting h in half would cut the error in half. If the error is proportional to h2, then
cutting the step size in half would reduce the error by ¼. When the truncation error is written with
this O(hn) notation, we call n the order of the error. In two calculations, with step sizes h1 and
h2, we expect the following relation between the truncation errors, ε1 and ε2 for the calculations.

n

h

h

1

2
12 [17]

We use the approximation sign (≈) rather than the equality sign in this equation because the error
term also includes an unknown factor of some higher order derivative, evaluated at some
unknown point in the region. The approximation shown in equation [17] would be an equality if
this other factor were the same for both step sizes.

Another important idea about the order of the error is that an nth order finite-difference expression
will give an exact value for the derivative of an nth order polynomial. Because a Taylor series is a
polynomial series, it can represent a polynomial exactly if a sufficient number of terms are used.
This is illustrated further below.

The expression for the first derivative that we derived in equation [16] is said to have a first order
error. We can obtain a similar finite difference approximation by writing the general series in
equation [14] for k = -1. This gives the following result.

62

3
'''

2
'''

1

h
f

h
fhfff iiiii [18]

Numerical methods ME 309, L. S. Caretto, November 4, 2017 Page 5

We can rearrange this equation to solve for the first derivative, f’i; recall that this is the first
derivative at the point x = xi.

)(.....
62

1

2
'''''1' hO

h

ffh
f

h
f

h

ff
f ii

ii
ii

i

 [19]

Here again, as in equation [16], we have a simple finite-difference expression for the first
derivative that has a first-order error. The expression in equation [16] is called a forward
difference. It gives an approximation to the derivative at point i in terms of values at that point
and points forward (in the +x direction) of that point. The expression in equation [19] is called a
backwards difference for similar reasons.

Derivative expressions with higher order errors

An expression for the first derivative that has a second-order error can be found by subtracting
equation [18] from equation [15]. When this is done, terms with even powers of h cancel giving
the following result.

120

2
6

22
5

'''''
3

''''

11

h
f

h
fhfff iiiii [20]

Solving this equation for the first derivative gives the following result.

)(
2

.....
12062

211

4
'''''

2
'''11' hO

h

ffh
f

h
f

h

ff
f ii

ii
ii

i

 [21]

The finite-difference expression for the first derivative in equation [21] is called a central
difference. The point at which the derivative is evaluated, xi, is central to the two points (xi+1 and
xi-1) at which the function is evaluated. The central difference expression provides a higher order
(more accurate) expression for the first derivative as compared to the forward or backward
derivatives. There is only a small amount of extra work (a division by 2) in getting this more
accurate result. Because of their higher accuracy, central differences are usually preferred in
finite difference expressions.

Central difference expressions are not possible at the start of end of a boundary. It is possible to
get higher order finite difference expressions for such points by using more complex expressions.
For example, at the start of a region, x = x0, we can write the Taylor series in equation [14] for the
first two points in from the boundary, x1 and x2, expanding around the boundary point, x0.

62

3
'''

0

2
''

0

'

001
h

f
h

fhfff [22]

6

)2(

2

)2(
)2(

3
'''

0

2
''

0

'

002
h

f
h

fhfff [23]

These equations can be combined to eliminate the h2 terms. To start, we multiply equation [22]
by 4 and subtract it from equation [23].

Numerical Differentiation L. S. Caretto, November 4, 2017 Page 6

 ..

6

)(

2

)(
)(4...

6

)2(

2

)2(
)2(4

3
'''

0

2
''

0

'

00

3
'''

0

2
''

0

'

0012

h
f

h
fhff

h
f

h
fhffff

This equation can be simplified as follows

6

)(
4)2(34

3
'''

0

'

0012
h

fhffff [24]

When this equation is solved for the first derivative at the start of the region a second order
accurate expression is obtained.

)(
2

34
....

32

34 2012

2
'''

0
012'

0 hO
h

fffh
f

h

fff
f

 [25]

A similar equation can be found at the end of the region, x = xN, by obtaining the Taylor series
expansions about the point x = xN, for the values of f(x) at x = xN-1 and x = xN-2. This derivation
parallels the derivation used to obtain equation [25]. The result is shown below.

)(
2

34
....

32

34 212

2
'''12' hO

h

fffh
f

h

fff
f NNN

N
NNN

N

 [26]

Equations [25] and [26] give second-order accurate expressions for the first derivative. The
expression in equation [25] is a forward difference; the one in equation [26] is a backwards
difference.

The evaluation of three expressions for the first derivative is shown in Table 1. These are (1) the
second-order, central-difference expression from equation [21], (2) the first-order, forward-
difference from equation [16], and (3) the second-order, forward-difference from equation [25].
The first derivative is evaluated for f(x) = ex. For this function, the first derivative, df/dx = ex.
Since we know the exact value of the first derivative, we can calculate the error in the finite
difference results.

In Table 1, the results are computed for three different step sizes: h = 0.4, h = 0.2 and h = 0.1.
The table also shows the ratio of the error as the step size is changed. The next-to-last column
shows the ratio of the error for h = 0.4 to the error for h = 0.2. The final column shows the ratio of
the error for h = 0.2 to the error for h = 0.1.

Table 1
Tests of Finite-Difference Formulae to Compute the First Derivative – f(x) = exp(x)

x f(x)
Exact
f'(x)

h = .4 h = .2 h = .1 Error Ratios

f’(x) Error f’(x) Error f’(x) Error (h=.4)/
(h=.2)

(h=.2)/
(h=.1)

Results using second-order central differences

0.6 1.8221 1.8221

0.7 2.0138 2.0138 2.0171 0.0034

0.8 2.2255 2.2255 2.2404 0.0149 2.2293 0.0037 4.01

0.9 2.4596 2.4596 2.4760 0.0164 2.4637 0.0041 4.01

1.0 2.7183 2.7183 2.7914 0.0731 2.7364 0.0182 2.7228 0.0045 4.02 4.01

1.1 3.0042 3.0042 3.0242 0.0201 3.0092 0.0050 4.01

1.2 3.3201 3.3201 3.3423 0.0222 3.3257 0.0055 4.01

Numerical methods ME 309, L. S. Caretto, November 4, 2017 Page 7

1.3 3.6693 3.6693 3.6754 0.0061

1.4 4.0552 4.0552

Results using first-order forward differences

0.6 1.8221 1.8221 2.2404 0.4183 2.0171 0.1950 1.9163 0.0942 2.15 2.07

0.7 2.0138 2.0138 2.4760 0.4623 2.2293 0.2155 2.1179 0.1041 2.15 2.07

0.8 2.2255 2.2255 2.7364 0.5109 2.4637 0.2382 2.3406 0.1151 2.15 2.07

0.9 2.4596 2.4596 3.0242 0.5646 2.7228 0.2632 2.5868 0.1272 2.15 2.07

1.0 2.7183 2.7183 3.3423 0.6240 3.0092 0.2909 2.8588 0.1406 2.15 2.07

1.1 3.0042 3.0042 3.3257 0.3215 3.1595 0.1553 2.07

1.2 3.3201 3.3201 3.6754 0.3553 3.4918 0.1717 2.07

1.3 3.6693 3.6693 3.8590 0.1897

1.4 4.0552 4.0552

Results using second-order forward differences

0.6 1.8221 1.8221 1.6895 0.1327 1.7938 0.0283 1.8156 0.0066 4.69 4.32

0.7 2.0138 2.0138 1.9825 0.0313 2.0065 0.0072 4.32

0.8 2.2255 2.2255 2.1910 0.0346 2.2175 0.0080 4.32

0.9 2.4596 2.4596 2.4214 0.0382 2.4508 0.0088 4.32

1.0 2.7183 2.7183 2.6761 0.0422 2.7085 0.0098 4.32

1.1 3.0042 3.0042 2.9934 0.0108

1.2 3.3201 3.3201 3.3082 0.0119

1.3 3.6693 3.6693

1.4 4.0552 4.0552

For the second-order formulae, the error ratios in the last two columns of Table 2-1 are about 4,
showing that the second-order error increases by a factor of 4 as the step size is doubled. For
the first order expression, these ratios are about 2. This shows that the error increases by the
same factor as the step size for the first order expressions. The expected values of the error
ratios are only obtained in the limit of very small step sizes. We see that the values in the last
column of this table (where the actual values of h are smaller than they are in the next-to-last
column) are closer to the ideal error ratio.

The techniques that have been used here to derive forward, backward, and central derivative
expressions with first- and second-order error can be expanded to consider higher order
derivatives and higher order errors. Lists of various finite-difference formulas can be found in
numerical analysis texts.

Roundoff error

Truncation errors are not the only kind of error that we encounter in finite difference expressions.
As the step sizes get very small the terms in the numerator of the finite difference expressions
become very close to each other. We lose significant figure when we do the subtraction. For
example, consider the previous problem of finding the numerical derivative of f(x) = ex. Pick x = 1
as the point where we want to evaluate the derivative. With h = 0.1 we have the following data
for calculating the derivative by the central-difference formula in equation [21].

 722815.2
)1.0(2

722815.2004166.3

2

)()(

2
)(' 11'

h

hxfhxf

h

ff
xff ii

i

Numerical Differentiation L. S. Caretto, November 4, 2017 Page 8

Since the first derivative of ex is ex, the correct value of the derivative at x = 1 is e1 = 2.718282; so
the error in this value of the first derivative is 4.5x10-3. For h = 0.0001, the numerical value of the
first derivative is found as follows.

 907182818329.2
)0001.0(2

7180100139.27185536702.2

2

)()(
)('

h

hxfhxf
xf

Here, the error is 4.5x10-9. This looks like our second-order error. We cut the step size by a
factor of 1,000 and our error decreased by a factor of 1,000,000, as we would expect for a
second order error. We are starting to see potential problems in the subtraction of the two
numbers in the numerator. Because the first four digits are the same, we have lost four
significant figures in doing this subtraction. What happens if we decrease h by a factor of 1,000
again? Here is the result for h = 10-7.

 7182851763.2
)0000001.0(2

03887182815566.287247182821002.2

2

)()(
)('

h

hxfhxf
xf

Our truncation analysis leads us to expect another factor of one million in the error reduction as
we decrease the step size by 1,000. This should give us an error of 4.5x10-15. However, we find
that the actual error is 5.9x10-9. We see the reason for this in the numerator of the finite
difference expression. As the difference between f(x+h) and f(x-h) shrinks, we are taking the
difference of nearly equal numbers. This kind of error is called roundoff error because it results
from the necessity of a computer to round off real numbers to some finite size. (These
calculations were done with an excel spreadsheet which has about 15 significant figures. Figure
2-1 shows the effect of step size on error for a large range of step sizes.

For the large step sizes to the right of Figure 2-1, the plot of error versus step size appears to be
a straight line on this log-log plot. This is consistent with equation [17]. If we take logs of both
sides of that equation and solve for n, we get the following result.

)log()log(

)log()log(

log

log

12

12

1

2

1

2

hh

h

h
n

 [27]

Equation [27] shows that the order of the error is just the slope of a log(error) versus log(h) plot.
If we take the slope of the straight-line region on the right of Figure 2-1, we get a value of
approximately two for the slope, confirming the second order error for the central difference
expression that we are using here. However, we also see that as the step size reaches about
10-5, the error starts to level off and then increase. At very small step sizes the numerator of the
finite-difference expression becomes zero on a computer and the error is just the exact value of
the derivative.

Numerical methods ME 309, L. S. Caretto, November 4, 2017 Page 9

Final Observations on Finite-Difference Expressions from Taylor Series

The notes above have focused on the general approach to the derivation of finite-difference
expressions using Taylor series. Such derivations lead to an expression for the truncation error.
That error is due to omitting the higher order terms in the Taylor series. We have characterized
that truncation error by the power or order of the step size in the first term that is truncated. The
truncation error is an important factor in the accuracy of the results. However, we also saw that
very small step sizes lead to roundoff errors that can be even larger than truncation errors.

The use of Taylor series to derive finite difference expressions can be extended to higher order
derivatives and expressions that are more complex, but have a higher order truncation error.
One expression that will be important for subsequent course work is the central-difference
expression for the second derivative. This can be found by adding equations [15] and [18].

24

2
2

22
4

''''
2

''

11

h
f

h
ffff iiiii [28]

We can solve this equation to obtain a finite-difference expression for the second derivative.

)(
2

.....
12

2 2

2

11

2
''''

2

11'' hO
h

fffh
f

h

fff
f iii

i
iii

i

 [29]

Although we have been deriving expressions here for ordinary derivatives, we will apply the same
expressions to partial derivatives. For example, the expression in equation [29] for the second
derivative could represent d2f/dx2 or ∂2f/∂x2.

The Taylor series we have been using here have considered x as the independent variable.
However, these expressions can be applied to any coordinate direction or time.

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E-18 1.E-16 1.E-14 1.E-12 1.E-10 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00

E
rr

o
r

Step Size

Figure 1. Effect of Step Size on Error

Numerical Differentiation L. S. Caretto, November 4, 2017 Page 10

Although we have used Taylor series to derive the finite-difference expressions, they could also
be derived from interpolating polynomials. In this approach, one uses numerical methods for
developing polynomial approximations to functions, then takes the derivatives of the
approximating polynomials to approximate the derivatives of the functions. A finite-difference
expression with an nth order error that gives the value of any quantity should be able to represent
the given quantity exactly for an nth order polynomial.*

The expressions that we have considered are for constant step size. It is also possible to write
the Taylor series for variable step size and derive finite difference expressions with variable step
sizes. Such expressions have lower-order truncation error terms for the same amount of work in
computing the finite difference expression.

In solving differential equations by finite-difference methods, the differential equation is replaced
by its finite difference equivalent at each node. This gives a set of simultaneous algebraic
equations that are solved for the values of the dependent variable at each grid point.

Finite difference expressions can be derived from Taylor series. This approach leads to an
expression for the truncation error that provides us with knowledge of how this error depends on
the step size. This is called the order of the error.

In finite-difference approaches, we need to be concerned about both truncation errors and
roundoff errors. Roundoff errors were more of a concern in earlier computer applications where
limitations on available computer time and memory restricted the size of real words, for many
practical applications, to 32 bits. This corresponds to the single precision type in Fortran or the
Single type in VBA. With modern computers, it is possible to do routine calculations using 64-bit
(or higher precision) real words. This corresponds to the double precision type in Fortran* or the
double type in VBA. The 32-bit real word allows about 7 significant figures; the 64-bit real word
allows almost 16 significant figures.

* If a second order polynomial is written as y = a + bx + cx2; its first derivative at a point x = x0 is given by the
following equation: [dy/dx]x=x0 = b + 2cx0. If we use the second-order central-difference expression in
equation [21] to evaluate the first derivative, we get the same result as shown below:

0
0

2

0

2

0

2

0

2

0

2

00

2

0000

2
2

42

2

)2()2(2

2

])()([)()(

2

)()(

0

cxb
h

hcxbh

h

hhxxchhxxcbh

h

hxchxbahxchxba

h

hxyhxy

dx

dy

xx

* Also known as real(8) or real(KIND=8) in Fortran 90 and later versions; single precision is typed as real,
real(4) or real(KIND=4) in these versions of Fortran.

